Continuous Adjoint Method for Unstructured Grids

نویسندگان

  • Antony Jameson
  • Sriram Shankaran
  • Luigi Martinelli
چکیده

Adjoint-based shape optimization methods have proven to be computationally efficient for aerodynamic problems. Themajority of the studies on adjoint methods have used structured grids to discretize the computational domain. Because of the potential advantages of unstructured grids for complex configurations, in this study we have developed and validated a continuous adjoint formulation for unstructured grids. The hurdles posed in the computation of the gradient for unstructured grids are resolved by using a reduced gradient formulation. The methods to impose thickness constraints on unstructured grids are also discussed. The results for twoand threedimensional simulations of airfoils and wings in inviscid transonic flow are used to validate the design procedure. Finally, the design procedure is applied to redesign the shape of a transonic business jet configuration; we were able to reduce the inviscid drag of the aircraft from 235 to 216 counts resulting in a shock-free wing. Although the Euler equations are the focus of the study in this paper of the adjoint-based approach, the solution of the adjoint system and gradient formulation can be conceptually extended to viscous flows. The approach presented in this study has been successfully used by the first and third authors for viscous flows using structured grids. However, particular aspects of the design process, such as the robustness of the mesh deformation process for unstructured grids, need more attention for viscous flows and are therefore the subject of ongoing research.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aerodynamic Design Optimization on Unstructured Grids with a Continuous Adjoint Formulation

A continuous adjoint approach for obtaining sensitivity derivatives on unstructured grids is developed and analyzed. The derivation of the costate equations is presented, and a second-order accurate discretization method is described. The relationship between the continuous formulation and a discrete formulation is explored for inviscid, as well as for viscous flow. Several limitations in a str...

متن کامل

AIAA 2003–3955 A continuous adjoint method for unstructured grids

Adjoint based shape optimization methods have proven to be computationally efficient for aerodynamic problems. The majority of the studies on adjoint methods have used structured grids to discretize the computational domain. Due to the potential advantages of unstructured grids for complex configurations, in this study we have developed and validated a continuous adjoint formulation for unstruc...

متن کامل

A Systematic Formulation of the Continuous Adjoint Method Applied to Viscous Aerodynamic Design

A continuous adjoint approach to aerodynamic design for viscous compressible flows on unstructured grids is developed, and three important problems raised in the continuous adjoint literature are solved: using tools of shape deformation of boundary integrals a generic adjoint formulation is developed with independence of the kind of mesh used; a systematic way of reducing the 2 order derivative...

متن کامل

AIAA 2004–0533 Aerodynamic Shape Optimization of Complete Aircraft Configurations using Unstructured Grids

Adjoint based shape optimization methods have proven to be computationally efficient for aerodynamic problems. The majority of the studies on adjoint methods have used structured grids to discretize the computational domain. Due to the potential advantages of unstructured grids for complex configurations, in this study we have developed and validated a continuous adjoint formulation for unstruc...

متن کامل

A New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme

Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008